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An exact map of the probability distribution function for the kicked rotor is generated by solving
Liouville’s equation for any arbitrary initial condition and kicking strength. This solution is compared
to the analogous quantum map. In this matter we compare two linear partial differential equations
describing the evolution of wave functions in Hilbert space. This exact map is also compared to
Chirikov’s standard map generated from the canonical equations of motion. As expected, the classical
map for the probability distribution function is chaotic for large kicking potentials. The practical rever-
sibility of Liouville’s equation is compared to Schrodinger’s equation and the standard map.

PACS number(s): 05.45.+b

I. INTRODUCTION

Dynamical chaos is characterized by random motion in
the absence of any noise or randomly generated paramé-
ters. Such chaotic behavior can be found in nonlinear
classical systems subjected to large external potentials
[1-4]; an example of such a system displaying stochastic
behavior is the one-dimensional kicked rotor. The kicked
rotor is essentially a rigid pendulum subject to a periodic
S-function potential. Over the past decade, the rotor has
been used as a vehicle to search for chaotic behavior in
the analogous quantum system (i.e., quantum rotor)
[5—15]. Dynamical chaos in classical systems is charac-
terized by the instability of orbits in phase space generat-
ed by solving Hamilton’s equation of motion [1,15,16].
For a given set of initial conditions and a large kicking
potential, two nearby orbits will diverge exponentially.
The average rate of divergence of the trajectories is
characterized by the Kolmogorov-Sinai (KS) entropy 4 (h
should not be confused with Planck’s constant) [1], or
similarly Lyapunov exponents [17]. The KS entropy pro-
vides a measure for the degree of instability of a particu-
lar trajectory; it is commonly used to define the transition
to chaos. A system may be considered stochastic if 4 > 1.
Two consequences of classical chaos in the kicked rotor
are (1) diffusion in phase space resulting in a linear
growth of the energy [1,6], and (2) “practical” irreversi-
bility of the equations of motion [10]. By practical ir-
reversibility we mean that the equations of motion are
numerically irreversible after the system has been permit-
ted to evolve for a characteristic time. In principle, the
classical system is exactly reversible; however, a comput-
er does not have the requisite accuracy to preserve all of
the information after a characteristic time.
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The quantum rotor, for an identical kicking potential,
does not have all of the “tell tale” signs of chaos. Unlike
the classical system, the energy does not grow diffusely in
time [6]. Instead, after a short time, the energy ceases to
grow and oscillates about a constant value. Furthermore,
the quantum system exhibits ‘“practical” reversibility.
Sheplyansky [10] showed that the quantum rotor is prac-
tically reversible. Casati and co-workers [11,12] demon-
strated that the quantum one-dimensional hydrogen atom
is also practically reversible, while the classical system is
practically irreversible. The lack of energy growth might
very well be expected. The quantum rotor has a discrete
energy spectrum. Fishman and co-workers [8], show that
the discrete nature of the quasienergy spectrum localizes
the wave packet. They show a similarity between the lo-
calization of the quantum rotor and Anderson localiza-
tion of an electron in a solid with a randomly spaced lat-
tice.

There is an inherent problem comparing the classical
and quantum system: ordinary nonlinear (nonintegrable)
differential equations (canonical equations of Hamilton),
describing the evolution of orbits in phase space, are used
to describe the time evolution of the classical system. On
the other hand, for the quantum system, a linear partial
differential equation describing the evolution of probabili-
ty functions (wave functions) is solved. To overcome this
problem of comparing the classical and quantum system,
we solve the classical Liouville equation for the kicked
rotor and compare it to the solution of Schrédinger’s
equation (and the canonical equations of motion).
Liouville’s equation is a linear partial differential equa-
tion describing the time evolution of the classical proba-
bility distribution function. The solution to Liouville’s
equation is analogous to the Wigner representation of the
quantum phase-space distribution [18,19]. Unlike the
canonical equations of motion, Liouville’s equation de-
scribes a finite measure of initial conditions, and since it
is first order, it can be solved by adding up the orbits.
However, like the equations of motion, the solution of
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Liouville’s equation should be chaotic for large kicking
potentials. Ford, Mantica, and Ristow in Ref. [14] also
compared the solution of Liouville’s equation for the
Arnol’d cat to Schrodinger’s equation.

In Sec. II of this paper we provide background materi-
al on Chirikov’s standard map and the quantum map for
the kicked rotor. In Sec. III, a map for the classical
probability distribution function similar to the quantum
map [6] for the wave function is generated. This tem-
poral map relates the classical probability distribution
function before and after a kick. This classical map can
be used as a new tool to further study the chaotic
behavior of the classical rotor. Section IV of this paper
examines the reversibility of Liouville’s equation. We
find that for certain kicking strengths and initial condi-
tions Liouville’s equation can be numerically iterated a
few kicks longer than the standard map before informa-
tion is lost. For most other conditions, compared to
Schrodinger’s equation Liouville’s equation, as expected,
is practically irreversible.

II. BACKGROUND

The one-dimensional time-dependent Hamiltonian for
the kicked classical rotor is [6]

2 ©
H=L tkcoso > s(t—nT), (1)
2J n=—o
where I is the angular momentum, k is the strength of the
kick, O is the angle of the rotor, T is the period of the
kick, n is the kick number, J is the angular momentum,
H,=1I%/2 is the Hamiltonian of the free rotor, and
H, ,=kcos83,6(t—nT) is the interaction term. In the
rest of this paper the angular momentum J=1. The
above Hamiltonian corresponds to a rigid pendulum sub-
ject to a nonlinear potential, V(6)=k cosf, which is
turned on and off for a brief instant with a period T. In-
tegrating the canonical equations of motion over one
period results in the celebrated Chirikov’s standard map
(1]

I,.,=I,+Ksin6, , (2a)
6, +1=60,+1, 11, (2b)

where K =kT and T=1IT. For K << 1, the map (2) is inte-
grable; a majority of the orbits in phase space lie on in-
variant curves. Furthermore, when K << 1, the map (2) is
reversible on a computer (practical reversibility). If
K~1, the standard map is near integrable
[Ko’'mogorov-Arnol’d-Moser (KAM) theory] and invari-
ant curves (also known as KAM curves) bound regions of
chaos. This case (K ~ 1) corresponds to the transition be-
tween integrable and nonintegrable dynamics. If K >>1,
all invariant KAM curves disappear and the result is
near-total chaos in phase space. For this latter case, most
initially close trajectories in phase space diverge exponen-
tially. The distance between the nearby trajectories is
d =d,e", where d, is the initial distance between orbits
and & is the Kolmogorov-Sinai (KS) entropy. For the
kicked rotor A ~In(K /2) when K >>1 [1]. Additionally,
when K >>1, the angle becomes random and the energy
grows according to the diffusion law K2t /4. In this sto-
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chastic regime diffusion in action space can be described
by a diffusion equation [20].

The instability of orbits renders the system practically
irreversible; i.e., the equations of motion can only be
iterated forward for a certain time (reversal time ¢,) be-
fore memory of the initial condition is lost. The reversal
time is a function of both the computer accuracy and the
KS entropy 4 [21]. The reversal time is ¢, ~1Ine /h, where
€ corresponds to the computer accuracy and
h ~In(K /2). As an example, with double-digit accuracy
(e=1071%) and K =5, the initial conditions will be recon-
structed if a time reversal is performed after 40 iterations
of the standard map, but no more. After several itera-
tions computer round-off errors prevent the reconstruc-
tion of the initial conditions. Greene [22] has shown that
these round-off errors have a negligible contribution in
determining the transition to global stochasticity.

We now turn our attention to the quantum kicked ro-
tor with the Hamiltonian [6]

ﬁ2 a2 ©
H= 2 367 +kcos® I 8(t—nT). (3)

n=-—o

The 8-function potential makes it convenient to describe
the solution of Schrodinger’s equation in the form of a
map [6] given by

A4,t+T)= S J,_(Kexp(—inT/2) A, (), @

where A4, (t+7T) is the eigenfunction after one kick,
J, _ are Bessel functions of the first kind, E,.=n'2/2
are the eigenvalues (free energy), A,.(t) is the initial
eigenfunction before a kick, and Planck’s constant z=1.
The wave function for Schrodinger’s equation is
W(6,1)=—1 A, (D)emO . (5)
27 Y »

m=

The energy of the quantum rotor

= 3 —[4,0] (6)

m=-—ow

can be compared to the energy of the classical system. In
numerical experiments, Casati et al. [6] found that the
energy of the quantum system grows diffusely for a short
time at a rate comparable to the classical system, and
then ceases to grow at a break time. After this break
time, the energy oscillates about a fixed value and the
quantum wave packet is localized in momentum space;
this localization is due to the discrete nature of the
quasienergy spectrum. Fishman, Grempel, and Prange
[8] show that the quasienergy spectrum of the quantum
rotor is discrete. They show a similarity between the lo-
calization of the quantum rotor and Anderson localiza-
tion of an electron in a solid with a randomly spaced lat-
tice.

In addition to demonstrating nondiffusive behavior for
large K, the quantum map is practically reversible when
compared to the classical standard map (2). In fact, as
shown by Sheplyansky [10], the difference between the in-
itial conditions before and after reversibility is compara-
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ble to the accuracy of the normalization of the eigenstates
which, in turn, depends on the number of eigenfunctions
summed over in (5). After a certain amount of time, if a
sufficient number of eigenfunctions are not selected in (5),
the quantum system will not be reversible. This condi-
tion is easily checked by examining the normalization
condition after each kick.

III. SOLUTION OF LIOUVILLE’S EQUATION
FOR THE KICKED ROTOR

In this section we generate a map for the probability
distribution function (also known as the phase-space den-
sity function) for the kicked classical rotor by solving
Liouville’s equation

S| 9p |
Ay Lp, (7

where L is the Liouville operator given by

0 0

OH |1 9 9
36 a1

ol

aH
a0

L=—i i . (8)

In expression (8) H is the Hamiltonian of the system, I is
the angular momentum, and 6 is the coordinate.

We solve Liouville’s equation (7) for the Hamiltonian
(1) and generate a map for the probability distribution
function p(I,6,t) using the method outlined by Casati
et al. [6], or that used to generate an analogous map for
the quantum wave function. This map is used to calcu-
late the exact diffusion coefficient and energy for any ini-
tial condition and kicking strength k. Rechester and co-
workers [23,24] first derived an expression for the
diffusion coefficient of the standard map with an external
stochastic term for large k and any value of k. Abarbanel
[20] used Fourier path integrals to derive the diffusion
coefficients for the standard map. Ford, Mantica, and
Ristow [14] also solve Liouville’s equation for the
Arnol’d cat.

In solving Liouville’s equation, we regard the system as
a free rigid rotor perturbed by §-function potentials. We
start by solving Liouville’s equation for the interaction
Hamiltonian

H=kcosd 3 &t —nT) 9)

n=—oo

to relate the probability distribution function before a
kick to the probability distribution function after the
kick. We set p(I,0,t)=A(6,t)F(I) and integrate
Liouville’s equation

aH
a0

9
oI

—a-B—:: J— 1 < —_ _QE
a1 ksind » 8(t—nT) Al

(10)
over one kick [the (n + 1)th] to yield the expression
AF ((n +1)T,0)=e " Msin0 4= ((n +1)T,0) , (11)

where the (+) refers to the instant just after the (n + 1)th
kick, the (—) corresponds to the time just before the
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(n +1th kick, and F(I)=e™. Using (11), solutions to
(10) just after the (n + 1)th kick have the form

pL,0,(n+1)T)= [ dre™ A4 (n+1T,0). (12)
The coefficients 4,, before and after the kick, are ob-

tained by setting (12) equal to the solution of the free
Hamiltonian (H,=1?/2) given by [25]

p1,6,t)= 3 C,(I)e imhgimé (13)

to yield
J© dre™a; (n+1)T,0)

= i C,(I,(n+1)T)e™ (14)

m=—o0

after the (n + 1)th kick, and
[ dre™A; (n+1)T,0)

—
0

= 2

m=-—x
just before the (n + 1)th kick. After each kick, the func-
tional form of C,, changes, thus the notation
C,.[I,(n+1)T], where (n +1)T denotes the fact that
coefficients C,, correspond to the free propagation after
the (n + 1)th kick (ultimately we will find the relation be-
tween C,,(I,nT) and C, [I,(n+1)T]). Fourier trans-
forming (14) and (15) results in expressions for the
coefficients A, given by

A ((n+1)T,0)

C,,(I,nT)e m™Teimé (15)

- s 7 dIc, U, (n +1)T)e ™™o, (16a)

me——
and

A7 ((n +1)T,0)

= 3 [T dIC,(I,nT)e~™eim% ~mIT _ (16b)

m=—o0
Substituting (16b) into (11) and using (12) yields the solu-
tion for p* (1,6,(n +1)T) given by

p(,0,(n+1)T)

= 3 [° [7 draxc, e

xe—t)\k smé)eﬁtklezmee—iml T ,

(17)

where C,,(I',nT) are coefficients after the nth kick. To
relate these to the coefficients after the (n + 1)th kick, we
set Eq. (17) equal to the free probability distribution func-
tion immediately after the (n + 1)th kick given by

pHIL,6,(n+1T)= S Cp(I,(n +1)T)e™® (18)

m=—o0

to yield
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CI(I’(n +1)T)= 2 foo fco OZWdI,dA%e7iAksingei)\le*ikl'cm(ll’nT)e‘imI’Tei(m—1)0 . (19)
m = — oo —® —*®

By taking advantage of the identity
J© dretMImIksind=g(] — '~ sing)

expression (19) simplifies to

CI,(n+1)T)=

m=—c

Integrating over I’ yields the final map for C given by
C(I,(n+1)T)

& 2 d@ .
_ ao I— )
=3 fo Py C,.( k sin6,nT)

m=—o

xeimTk sinf —imITei(m -6 . (22)

e
Expression (22), in combination with (13), describes the
time evolution of the probability distribution function
over one kick or period 7. This map is analogous to the
Wigner representation of the quantum phase-space distri-
bution [18]. We use the expression

27 0 12
= dedl—p(1,6,(n +1)T) , 23
E=["[" 5 PU,6,(n+1)T) (23)
and (13) to calculate the rotor energy given by
w 2
E=27[° dzlz—co(z,(nﬂ)T). (24)

Expression (24) can be used to calculate the energy after
n kicks for any arbitrary initial condition; however, prop-
er choice of initial conditions will avoid unwieldy or oth-
erwise time-consuming numerical computations. Here,
we select initial conditions having the form

o(1)

Co(1,0)= Py

(25)

where we initially excite the zeroth-order terms. The en-
ergy after the first kick is simply

> 7 fohdl’%ﬁ(l—l’—k sin@)C,, (I',nT)e ~ I Teitm

—ho 1)

The expression for the energy after more than two kicks
involves the quasilinear term (k%/4)n, added to an
infinite sum. Calculating the probability distribution
function and the energy numerically to reasonable com-
puter accuracy quickly becomes unwieldy. Fortunately,
this is true for values of the kicking strength less than, or
comparable to, the critical value kT =1. For kicking
strengths above this critical value, the quasilinear term
(k2/4)n yields the largest contribution to the energy and
thus, the infinite sum can be truncated without losing
significant accuracy. As expected, for k >>1, the energy
grows linearly in time with a slope k2 /4.

IV. REVERSIBILITY OF LIOUVILLE’S EQUATION

We now turn our attention to the reversibility of
Liouville’s equation. We start by integrating Liouville’s
equation (7) backwards, starting from the nth kick to gen-
erate a reverse map for the probability distribution func-
tion similar to expression (22). Integrating (10) back-
wards yields

Ay ((n+1)T,0)=e™sn0 4 5 ((n +1)T,0) .  (28)

This expression relates the coefficients A4, after a kick to
the coefficients just before a kick. We use the expression
for the probability distribution function just before the
kick

p(L,6,(n +1)T)
=[7 dre™Me™ 4 (n+1)T,0), (29)

_k?
E= 4 (26) and the solution of the free rotor
while the energy after the second kick is p (1,6,(n +1)T)= i C, (I,nT)e —imIT,im8 30)
k2 kl 1 k ) ( m=—o
E=—+—{1—J,(2kT)} . 27
4 4 { 2 } ) to arrive at an expression for the coefficients C, given by
J
—i z ® ® 2m 0y 00 @O inksing kD, —iAr , i(m —
CULnTle =3 [* [ [TdI'dAs ~esm%™Me=MC, (I',(n +1)T)e " 07 (31)

m=—o®

Integrating the right-hand side of (31) results in a map re-
lating the coefficients just before a kick to those after a
kick:

— T < 2 d6 ;
CLnT)=e" 3 S5 CntI +ksiné,(n +1)T)

Xei(m—l)ﬂ 32)

The initial conditions can be reassembled after repeated
applications of the map (32).

Numerical experiments were carried out with the for-
ward (22) and the reverse (32) maps to compare the prac-
tical reversibility of the standard map, Liouville’s equa-
tion, and Schrodinger’s equation. Numerically, the clas-
sical map (22) is more complex than its quantum counter-
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part. The integral over 6 in the quantum map reduces
down to a Bessel function of the first kind which greatly
simplifies the numerical task. On the other hand, after
each iteration of the classical map (22), the integral must
be evaluated numerically with reasonable accuracy which
significantly adds to the computation time. Thus, in or-
der to reduce the computation time and, at the same
time, preserve reasonable accuracy, a kicking strength
k =3000 was used. Numerical experiments were carried
out by calculating the quantum energy using (6) and clas-
sical energy using (2) and (24) for 4 kicks and then per-
forming a time reversal. As shown in Fig. 1 the classical
map (2) fails the reversibility test (the initial condition is
not reproducible) after four kicks, while the solution to
Liouville’s and Schrodinger’s equation is reversible for
the initial conditions and kicking strength given above.
In fact, the initial conditions are reassembled with the re-
quested accuracy. We used single precision (eight-digit)
accuracy in calculating the energy from the standard map
while only three-digit accuracy was used in calculating
the energy from the map (22) and (32); accuracy was
verified after each kick by checking the normalization
condition. For this particular case it appears that
Liouville’s equation contains more information than the
standard map for just a few kicks. This difference is in-
teresting and requires further investigation. This numeri-
cal evidence does not imply that Liouville’s equation is
more or less reversible than the standard map. First of
all, for more than four kicks, unlike Schrédinger’s equa-
tion, Liouville’s equation is no longer practically reversi-
ble. We have repeated the numerical experiments with
other initial conditions and kicking strengths and found
that for many cases Liouville’s equation is just as practi-
cally irreversible as the standard map. However, the con-
dition for reversibility of Liouville’s equation is similar to
the quantum case. Namely, the accuracy of reversibility
depends on the number of eigenfunctions summed over in
the map (22) and (32). The classical map (22) is numeri-
cally more complicated than the quantum map (4). It
would be very difficult to carry out the reversibility ex-
periment for longer times; the number of eigenfunctions
we have to sum over in (22) and (32) in order to guarantee
reversibility increases exponentially with time and at
some point becomes numerically unwieldy.

V. CONCLUSION

Liouville’s equation is a linear, integrable partial
differential equation describing the time evolution of the
probability distribution function. Solving Liouville’s
equation is inherently the same as solving the equations
of motion except that one single equation is used to de-
scribe the evolution of orbits in phase space. Liouville’s
equation is comparable to Schrodinger’s equation since it
is a linear partial differential equation describing the evo-
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FIG. 1. Reversibility of Liouville’s Equation for X =3000 and
T=1. Numerical experiments were carried out by calculating
the quantum energy using (6) and classical energy using (2) and
(24) for four kicks and then performing a time reversal. For this
set of conditions Liouville’s equation and Schrddinger’s equa-
tion are reversible after a few kicks.

lution of wave functions in Hilbert space. In this paper
we have generated a map for the classical probability dis-
tribution function of the one-dimensional kicked rotor by
solving Liouville’s equation. We have compared this
solution to the solution of both Schrodinger’s equation
and the classical canonical equations of motion (the stan-
dard map), the solution to Liouville’s equation is chaotic
even though it is a linear equation; therefore, as stated by
Ford, Mantica, and Ristow [14], linearity will not pre-
clude chaotic behavior. For large k, the instability of or-
bits in phase space results in a diffusive growth of energy.
With regard to reversibility, we find that compared to
Schrodinger’s equation, Liouville’s equation is practically
irreversible on a computer. After several iterations near-
ly an infinite number of eigenfunctions must be summed
over to guarantee reversibility. However, we have found
that for a few cases, Liouville’s equation appears to be
“more reversible’’ than the standard map (even for just a
few iterations).
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